
IEEE Transactions on Consumer Electronics, Vol. 55, No. 3, AUGUST 2009

Contributed Paper
Manuscript received July 15, 2009 0098 3063/09/$20.00 © 2009 IEEE

1392

Design and Analysis of Flash Translation Layers
for Multi-Channel NAND Flash-based Storage Devices

Sang-Hoon Park, Seung-Hwan Ha, Kwanhu Bang, Student Member, IEEE,
and Eui-Young Chung, Member, IEEE

Abstract — NAND Flash-based Storage Devices (NFSDs)

have been replacing the conventional magnetic storage
devices in many consumer electronic systems. One of the
advantages of NFSDs is their read/write bandwidth, which is
higher than that of the magnetic storage devices. For further
increase of their bandwidth, high-end NFSDs employ multi-
channel and multi-way architectures in which it is possible to
access the NAND Flash Memories (NFMs) in parallel for
amortizing the long latency of NFMs. Even though this
architecture provides higher bandwidth from the hardware
perspective, the overall performance of an NFSD critically
depends on how efficiently the multiple channels and ways are
utilized. In this regard, the key design component is an
intermediate software layer called Flash Translation Layer
(FTL), since it manages the hardware resources as well as
data. To the best of authors’ knowledge, this is the first work
to propose a general method to design an FTL for multi-
channel / multi-way NFSDs (FTL-MM). The proposed design
method consists of two steps. First, we design an FTL for a
single-channel / single-way NFSD (FTL-SS). Second, we
extend the FTL to support an NFSD with an arbitrary number
of channels and ways. To prove the generality and
effectiveness of the proposed method, we apply the method to
three well-known FTLs. The experimental results indicate that
the FTLs enhanced by our approach are comparable to the
ideal FTL and that their performance is scalable to various
channel / way architectures. Quantitatively speaking, the
average channel utilization decreases by at most 10%, when
we increase the number of channels and ways up to four1.

Index Terms — NAND Flash Memory (NFM), storage, Multi-
channel, Multi-way, Flash Translation Layer (FTL)

I. INTRODUCTION
Magnetic storage devices such as Hard Disk Drives

(HDDs) have been the de-facto standard mass-storage devices
in most electronic devices. However, recently introduced
NAND Flash-based Storage Devices (NFSDs) have been
gradually replacing HDDs, since they are superior to HDDs in
several aspects – low power, small form factor, and shock-
resistance. Furthermore, they enlarge the application area of

1 This work was supported in part by the IT R&D program of MKE/IITA
2009-S005-01(Development of Configurable Devices & S/W environment),
by the Korea Research Foundation Grant funded by the Korean Government
(MEST) (KRF-2007-313-D00578), and by Hynix Semiconductor Inc..

Sang-Hoon Park, Seung-Hwan Ha, Kwanhu Bang, and Eui-Young Chung
are with School of Electrical and Electronic Engineering, Yonsei University,
Seoul, 120-740, Korea (e-mail: {soskhong, shha}@dtl.yonsei.ac.kr, {lamar49,
eychung}@yonsei.ac.kr).

storage devices thanks to the small form factor. NFSDs are
now employed in many hand-held devices such as cellular
phones, Mobile Internet Devices, digital cameras in addition
to the traditional applications such as Personal Computers and
digital TVs. More importantly, NFSDs provide a higher Input
/ Output (IO) bandwidth than conventional magnetic storage
devices. This is an unbeatable merit of NFSDs in data-
intensive applications, since the CPU-IO performance gap has
become larger. More precisely, the CPU performance
improvement ratio in the last decade is roughly 20 times larger
than the HDD performance improvement ratio for the same
period.

The key challenge in improving the performance of NFSDs
is how to mitigate the long latency of NAND Flash Memories
(NFMs). This problem has become even severer due to the
advent of Multi-Level Cell (MLC) NFMs that need longer
data access time than the conventional NFMs called Single-
Level Cell (SLC) NFMs. The merit of MLC NFMs over the
SLC NFMs is bit cost. Their bit cost is much lower than that
of SLC NFMs, since they store multiple bits in a cell while
SLC NFMs store a bit per cell.

Typically, NFSDs consist of two parts – NFMs and a
controller. The controller is in charge of managing the
incoming data and the hardware resources including NFMs.
For this reason, the overall performance of an NFSD critically
depends on not only its architecture, but also its management
policy. The management policy is typically implemented as an
intermediate software layer called Flash Translation Layer
(FTL). From the data management perspective, one of its
important roles is to translate the logical addresses of the
incoming data to physical addresses. This translation requires
non-trivial computational efforts due to the limited lifetime of
NFM cells, erase-before-write and other complications.

The architecture of an NFSD controller affects the
computation of FTLs. For instance, contemporary NFSD
controllers employ a multi-channel and multi-way architecture
for increasing read/write bandwidth. In this architecture,
multiple communication paths (i.e., channels and ways) are
provided between the controller and NFMs. Even though such
architecture provides more bandwidth from the hardware
perspective, the effective bandwidth of an NFSD critically
depends on how efficiently the increased hardware resources are
utilized by an FTL. Although many previous works studied the
performance improvement of FTLs, no published work has
addressed the performance issue of FTLs for multi-channel and
multi-way NFSDs. That is, the performance issue has been
studied only in single-channel and single way NFSDs.

Authorized licensed use limited to: Yonsei University. Downloaded on October 11, 2009 at 10:03 from IEEE Xplore. Restrictions apply.

S.-H. Park et al.: Design and Analysis of Flash Translation Layers for Multi-Channel NAND Flash-based Storage Devices 1393

In this work, we focus exactly on the shortcomings of
previous FTL works with the following contributions. First,
we propose a general design method of FTLs targeting multi-
channel and multi-way NFSDs. Second, we quantitatively
prove the effectiveness of our method by applying it to three
well-known FTLs to make them support multi-channel and
multi-way NFSDs. Finally, we define the performance upper
bound of FTLs by introducing the oracle FTL that is only
possible by the offline analysis of traces.

The rest of this paper is organized as follows. In Section II,
we summarize the basics of NFSDs and the related work. In
Section III, we describe the proposed method in detail. Then,
we show its effectiveness through the extensive experimental
results in Section IV followed by a conclusion in Section V.

II. PRELIMINARIES AND RELATED WORK

A. NFSD Architecture
A typical NFSD architecture is shown in Fig. 1. An NFSD

consists of two parts – an NFSD controller and NFM chips.

Cache Buffer
(DRAM)

Flash
Mem.
Flash
Mem.
Flash
Mem.

NAND
Flash

…

Flash
Mem.
Flash
Mem.
Flash
Mem.

NAND
Flash

Flash
Mem.
Flash
Mem.
Flash
Mem.

NAND
Flash

FTL

…

Micro
Controller

NFSD’s
Controller

Host

H
os

t
In

te
rf

ac
e

C
ac

he
 B

uf
fe

r
C

on
tro

lle
r

NAND
Controller

…

NAND
Controller

NAND
Controller

BUS

Fig. 1. A typical NFSD architecture.

The controller and NFM chips communicate with each

other through a shared bus called channel. Due to the long
latency of NFM chips, the channel often becomes the
performance bottleneck of NFSDs. There are two popular
ways to improve the channel performance. One of them is to
connect multiple NFM chips to a channel such that the
channel accesses them in a time-multiplexed manner to hide
their long latencies. We call this technique n-way interleaving
if n NFM chips are connected to a single channel. The other
technique called channel striping is to increase the number of
channels for accessing NFM chips in parallel. In other words,
the channel bandwidth is proportional to the number of
channels.

Example 1: Fig. 2 shows how a multi-channel / multi-way

NFSD architecture efficiently manages the write operations,
using a 2-channel / 4-way NFSD architecture. A write
operation consists of three phases – Cmd, Data, and Program.
The write command and the data to be written are asserted to

an NFM in Cmd phase and in Data phase, respectively. In the
Program phase, the asserted data is written to the NFM
memory cells. The time required for the Program phase is
much longer than the other two phases and the interleaving
technique effectively hides the long latency of this phase by
overlapping multiple write operations within a single channel.
In Channel 0, we only need three ways, since the latency of
three overlapped write operations is long enough to hide the
latency of the Program phase, hence increasing the number of
ways larger than 3 is of no use from the performance
perspective. Further parallelism exploitation is possible by
having more channels, since the interleaved write operations
are also applicable to the additional channels as shown in
Channel 1. Similarly, read operations are also benefited in this
architecture.

Fig. 2. Concurrent interleaved write operations in 2-channel / 4-way
NFSD architecture.

The NFSD controller includes several sub-components. The

host interface logic is in charge of communicating with the
host machine. Also, many higher-performance NFSDs employ
DRAMs as caches for increasing the performance by
exploiting the data locality principle. A cache buffer controller
inside the NFSD controller manages the cache buffer. The last
component inside the NFSD controller is a micro-controller
on which an intermediate software layer called Flash
Translation Layer (FTL) is running. The FTL manages the
overall hardware resources and incoming data, hence its
quality critically affects on the overall performance of NFSDs.
Note that the channels and ways are also managed by the FTL.
We will discuss more details of FTLs in Section II.C.

B. NFM chip
An NFM chip has large memory cell arrays that store the

incoming data. The memory cells in an NFM chip are
hierarchically managed. More specifically, each memory array
consists of fixed-size blocks and a block is partitioned into
fixed-size pages. A page is also partitioned into fixed-size
sectors. A block is the basic unit of erase operations, while a
page is the basic unit of read and write operations.

Even though NFM chips are advantageous over the
conventional non-volatile memories and magnetic storages,
they still have a few weak points. First, they have an erase-
before-write property, meaning that a block erase must be
preceded to update even a single page inside the block.

Authorized licensed use limited to: Yonsei University. Downloaded on October 11, 2009 at 10:03 from IEEE Xplore. Restrictions apply.

IEEE Transactions on Consumer Electronics, Vol. 55, No. 3, AUGUST 2009 1394

Moreover, the time for a block erase operation is several times
longer than write / read operations. Hence, frequent block
erase operations will severely decrease the overall
performance. Second, a block of NFMs has its limited lifetime
that is often measured by the maximum erase count. For the
NFM reliability, it is very important to write data to blocks as
uniformly as possible. Finally, the read / write performance of
NFM chips is asymmetric. For instance, the write performance
is less than 30% of the read performance in [2]. For this
reason, the write performance improvement is a challenging
issue in NFSD design.

C. Flash Translation Layer
Flash Translation Layer (FTL) is an intermediate software

layer between the host file system and NFMs. Its major role is
translating the logical addresses given by the host system into
the physical addresses of NFMs. In addition, FTLs perform
some extra tasks such as wear-leveling and garbage collection.
These tasks are mainly required to hide the weak points of
NFMs mentioned in Section II.B.

Wear-leveling is a management policy to prolong the
lifetime of flash cells by evenly distributing the number of
erasing to each block. For this purpose, it often requires the
data movement among flash blocks, and then the flash blocks
only with invalid pages are erased and reserved for future use.
We call this procedure garbage collection. Since these tasks
may incur inordinate extra erase operations, the performance
of NFSDs critically depends on the quality of these tasks.
Hence, the reduction of erase operations has been the main
objective of previous works.

One intuitive address-mapping scheme is to translate the
logical addresses into the physical addresses in page-level,
since every read / write data is processed in the unit of page in
NFMs. This idea was employed in the FTL called page-
mapped FTL [11], [12]. This scheme translates a logical page
address into the address of any unused physical page and the
mapping information is stored in an address-mapping table. A
drawback of this scheme comes from the size of the address-
mapping table, since its size is proportional to the number of
pages. For this reason, it is rarely used in large capacity
NFSDs.

To mitigate this issue, FTLs with two-level address
translation schemes were proposed. We call them block-
mapped FTLs. Simply speaking, the block-mapped FTLs
perform the address translation in two steps. In the first step, a
logical page is mapped to one of any unused physical blocks,
and the mapping information is recorded into the address-
mapping table. Note that the size of this address-mapping
table is much smaller than that of page-mapped FTLs, since a
block usually consists of 64 or 128 pages in conventional
NFMs. In the second step, a physical page inside the chosen
block is allocated to the logical page. Also, most block-
mapped FTLs employ the concept of temporary blocks for
further accelerating the mapping table search especially for
write operations. This concept was first introduced in [3],

where the authors classified the blocks into two categories –
data blocks and log blocks. The log blocks are temporary
storage blocks and the number of log blocks is much smaller
than that of the data blocks. In a write operation, data are
always written to the log block, hence the mapping table
search time is marginal due to the small number of log blocks.
However, after the log blocks are fully used up, the FTLs have
to move the data in log blocks to data blocks for future write
operations. These extra operations can severely degrade the
overall system performance and more recent block-mapped
FTLs this attempted to reduce these extra operations.

The aforementioned FTLs mostly focused on the address-
mapping granularity only for a specific architecture, i.e.
single-channel / single-way architecture. They assumed that
all blocks (pages) have identical physical characteristics in
block-mapped FTLs (page-mapped FTLs). However, block-
mapped (page-mapped) FTLs need to distinguish the pages (or
blocks) depending on their physical locations in the multi-
channel / multi-way architecture, since their physical locations
affect on the overall performance. More specifically, the
efficiency of channel striping and interleaving critically
depends on the choice of blocks that determines the parallel
accessibility of NFMs. This is exactly what we tackle in this
paper, and we will present the details of our method in Section
III.

D. Related Work
Most previous works focused on the single-channel /

single-way architecture. There are only a few works on multi-
channel / multi-way architectures. The work in [1] analyzed
the impact of multiple channels and multiple ways on the
performance of NFSDs. A similar work can be found in [8].
The authors used a 2-channel / 4-way NFSD architecture, and
its performance was about 1.7 times higher than the compared
HDD. The authors in [6] proposed an improved channel
striping technique for increasing the channel utilization by
arranging the channel access order adaptive to the size of
incoming data. Even though these techniques improve the
overall system performance, they did not analyze the
computing overhead incurred to the FTLs. More importantly,
none of these works showed that the performance gain
achieved by their methods is scalable with respect to the
number of channels and ways. The scalability is a very
important metric to measure the general applicability of a
technique to an arbitrary number of channel / way
architectures. If a technique is not scalable, it cannot be used
for higher performance NFSDs which employ more channels
and ways.

III. FTL FOR MULTI-CHANNEL / MULTI-WAY NFSDS

A. Overview
The proposed FTL design method assumes that there is

already an FTL designed for single-channel / single-way
NFSDs. The objective of the proposed method is to extend the

Authorized licensed use limited to: Yonsei University. Downloaded on October 11, 2009 at 10:03 from IEEE Xplore. Restrictions apply.

S.-H. Park et al.: Design and Analysis of Flash Translation Layers for Multi-Channel NAND Flash-based Storage Devices 1395

FTL for single-channel / single-way (FTL-SS) to support
multi-channel / multi-way NFSDs (FTL-MM), while
maintaining the efficiency of the extended FTL greater than or
equal to that of FTL-SS. For this reason, we do not focus on
designing an FTL-SS in this work. However, we show the
effectiveness and generality of our method by applying it to
several well-known FTLs. For this reason, an FTL extended
by our method inherits the nature of its single-channel /
single-way version. We briefly summarize these FTLs in
Section III.B. Then, we address the critical design parameters
of our method in Section III.C. In Sections III.D and III.E, we
describe the address translation scheme in our method and the
address-mapping structure we propose, respectively.

B. FTLs for single-channel / single-way NFSDs
Many research groups have performed the research on

FTL-SSs. Most of these FTLs aimed at reducing the count of
extra operations (i.e., valid page copying and erase operations),
since they can severely degrade the overall performance of
NFSDs. The occurrence of extra operations is mainly due to
the wear-leveling and garbage collection.

Among many previous FTLs, we will summarize three
well-known FTLs – BAST [3], FAST [4], and Superblock
FTL [5]. We also utilize them in two aspects. First, we extract
the common features of these three FTLs. Based on the
features extracted, we build a general method for extending
FTL-SSs. Second, we utilize them to validate the generality
and effectiveness of our method through extensive
experiments.

Simply speaking, the previous FTLs mostly employed a
block-mapped address translation scheme, hence being
conceptually similar to each other. Their major difference lies
in the associativity between the data blocks and log blocks,
which critically affects the number of the extra operations.

In the following, we summarize the aforementioned three
FTLs from the associativity perspective.

 BAST (Block-Associative Sector Translation) [3] is a log
block based block-mapped FTL. When a write operation is
asserted with data and its corresponding logical address,
BAST first searches a block from an address-mapping table.
Then, it allocates a page based on the page offset which
corresponds to the lower bits of the logical address. There
are three types of blocks in BAST – free block, data block,
and log block. A free block is a clean storage and is reserved
for future data writes. A data block allocates a page for
storing the data being written. We call the allocated page
valid page. If the logical address of a write operation is
identical to that of one of previous writes, a valid page will
be allocated for the new write operation. In this case, BAST
invalidates the page and writes the new data to a log block.
We call this procedure an update. BAST allocates a single
log block for each data block, whenever an update occurs in
the data block for the first time. For later updates, the same
log block is utilized. In other words, there is one-to-one
mapping relationship between a data block and a log block.
A log block may also contain invalid pages if the same

logical address is asserted more than twice. A data block or
a log block is called full if it has no more clean pages. If a
logical address of a write operation is mapped to a data
block or a log block which is full, then an extra operation
called the merge operation is performed to make room for
the new data. The merge operation takes one of free blocks
and copies valid pages from the data block and the
corresponding log block. Then, BAST erases the data block
and the corresponding log block and returns them to the pool
of free blocks. The merge operations incur a large amount
of copying and erase operations, which critically degrades
the overall performance of NFSDs.
 FAST (Fully-Associative Sector Translation) [4] is similar
to BAST. However, it resolves the block-thrashing problem
and frequent merge operations of BAST by introducing
fully associative random log blocks and sequential log
blocks. An analogy can be found in the conventional cache
design. BAST and FAST correspond to the direct-mapped
cache and the fully associative cache, respectively. Hence,
FAST incurs more computing overhead than BAST.
 Superblock FTL [5] can be considered as a trade-off
between BAST and FAST. Both FTLs are two extreme
cases in managing log blocks. On the other hand,
Superblock FTL partitions into several groups called
superblocks rather than a single large group as is done in
FAST. A super block is associated with only part of data
blocks rather than all data blocks. According to the
aforementioned analogy, Superblock FTL corresponds to the
N-way set-associative cache, which is a trade-off between
the direct-mapped cache and the fully associative cache. It
also provides the full associativity among the pages within a
superblock.

C. Critical Design Parameters
Compared to FTL-SSs, the FTL-MMs have an additional

issue – the mapping between a logical address and NFMs. The
mapping scheme should well distribute the incoming write
data to maximally exploit the channel and way concurrency.
We can achieve the maximum concurrency by splitting the
data into as many pieces as the number of NFMs (the product
of the number of channels and the number of ways). The
problem occurs when the length of incoming data is shorter
than the page length. In that case, we waste a lot of storage
space, since only a small portion of a valid page will be used
for storing the data. The waste of storage space will eventually
incurs more merge operations later, since the log blocks and
data blocks will be used up quickly. For this reason, we do not
consider the data splitting when the data length is shorter than
the length of a page.

On the other hand, the log blocks in each NFM should be
consumed in a similar rate. Otherwise, a particular NFM (or
NFMs) will use up its log blocks quickly and incurs the merge
operations frequently. In other words, the performance
degradation due to the merge operations is maximally
postponed when all NFMs have the identical log block
consumption rate.

Authorized licensed use limited to: Yonsei University. Downloaded on October 11, 2009 at 10:03 from IEEE Xplore. Restrictions apply.

IEEE Transactions on Consumer Electronics, Vol. 55, No. 3, AUGUST 2009 1396

The other important parameter is scalability. Even though
more channels and more ways will improve the overall
bandwidth, this does mean that their utilization is also improved.
For this reason, the general method for designing an FTL-MM
should generate an FTL of which channel utilization ratio is
scalable with respect to the number of channels and ways.

D. Address Translation Scheme
Fig. 3 (a) shows the conventional structure of a 32-bit

logical address. It consists of three fields – block address,
page address, and sector offset. The blocks and page
addresses are used to find the corresponding physical data
block and page from the address-mapping table, and the sector
offset is used to represent the offset within a page. Along with
the logical address, the host system sends the data length in
terms of sectors and the operation mode (read or write).

(a) Conventional Structure

(b) Four Possible Structure for Multi-channel / Multi-way Architectures

HWC and HCW

CW

WC

32-bit Logical address

(c) Timing Diagrams Corresponding to the structures in (b)

Block Address(B) PageAddress(P) Sector Offset (S)

Way(W) Channel(C) B P S

C W B P S

B P C W S

B P W C S

HWC

HCW

CW

WC

Fig. 3. Structures of 32-bit logical address and timing diagrams
corresponding to the structures.

In the multi-channel / multi-way architecture, it is necessary

to transform the conventional logical address structure to
handle the channel and way mapping issue. For this reason,
we add two extra fields called C field and W field. Four
possible choices with these fields are depicted in Fig. 3 (b).

No matter what structure is chosen, the bit width of the B
field should be reduced for allocating part of its bits to the two
additional fields. An NFSD with CH channels and WY ways
requires log2CH bits and log2WY bits the fields C and W,
respectively. Even though the bit width of the B field is
reduced, there is no problem to represent all the blocks, since
a block is selected by the B field in conjunction with the
channel field and the way field. Note that the channel and way
fields do not change the capacity of the block address
representation. They only alter the mapping relationship
between the logical addresses and the data blocks.

Next, a qualitative performance comparison of these four
structures is shown in Fig. 3 (c). In this example, two
consecutive write operations are performed in the two-channel
/ two-way architecture. The data length of each write is one
page, and their logical addresses are sequential. When both
fields are allocated in high order bits (HWC and HCW
structures), two consecutive write operations are mapped to
the same NFM, hence there is no way to process them
concurrently. On the other hand, the other two structures (CW
and WC) allow two consecutive write operations in parallel.
The WC structure is preferred, since the channel striping
completely overlaps two write operations. This example
clearly shows that the multi-channel / multi-way architecture
will be benefited the WC structure.

The address translation scheme may not be advantageous
for a random write pattern that is not the major focus in multi-
channel / multi-way architectures. On the contrary, the
performance enhancement for random write patterns is
actively researched in different aspects such as transaction
scheduling and DRAM cache buffering [10]. Note that the
proposed method is complementary to these techniques, since
it simply changes the address translation scheme without
generating any side effects.

E. Address Mapping Table

0 1 2 3 … CH-1

0

1

…

WY-1

Sector Offset(S)Channel(C)Way(W)Block and Page Address (B)

Channels

W
ay

s

Mapping Table for
NAND flash memory of
Ch2, Wy 1

Physical Page and Block Addresses
Fig. 4. Address-mapping table for multi-channel / multi-way NFSDs.

We emphasize the scalable design of a address-mapping

table. More specifically, we design the mapping table to keep
the nature of the FTL-SS as much as possible. One obvious
way to achieve this is to minimize the inter-play among the
NFMs. In other words, we do not allow the sharing of
resources among NFMs except for channels. Without this
policy, large overhead can occur and severely degrade the
overall performance as shown in Example 2.

Example 2: each NFM has its own log blocks which can be

accessed by other NFMs. If a page copying occurs across the
ways, a page is read from one NFM by the NFM controller
and then sent to the other NFM. The overall latency of this
procedure is much longer than a page copying in a single
NFM, since an NFM generally supports such a feature. Even
worse, the transfer will include the data transfers among the
NFM controllers and main memory if a page copying occurs
across the channels. This scenario indicates that the resource

Authorized licensed use limited to: Yonsei University. Downloaded on October 11, 2009 at 10:03 from IEEE Xplore. Restrictions apply.

S.-H. Park et al.: Design and Analysis of Flash Translation Layers for Multi-Channel NAND Flash-based Storage Devices 1397

sharing may incur large performance overhead. Moreover, the
performance is not scalable and not predictable with respect to
the number of channels and the number of ways.

The non-sharing policy is implemented as a two-
dimensional block array table as shown in Fig. 4, where each
cell corresponds to a mapping table of each NFM. The
structure of the mapping table of each cell is identical to that
of the FTL-SS. The way field and the channel field are used as
the row index and the column index of each cell, respectively.
For the selected cell, remaining bits of the logical address
determine the appropriate block and page.

As mentioned above, the scalability is one of the benefits of
this structure. In addition, it has the following advantages.
First, the computation overhead is marginal, since the
additional computation, compared to the single-channel /
single way FTL, is just the channel and way indexing. Second,
the design time from the single-channel / single-way FTL is
also marginal, since it just requires expanding a block
mapping table into a two-dimensional array. Third, the
structure is general enough to be applicable to any block-
mapped FTLs, since it guarantees the atomicity of the single-
channel / single-way address-mapping table by simply adding
a layer on top of it. With these advantages, the proposed
scheme can maximize the utilization of the given hardware
resources (i.e., channels and ways) without causing any side
effects.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup
We implemented a trace-driven simulator for each FTL

discussed in Section III. For each simulator, it is possible to
configure some hardware parameters such as the number of
channels, the number of ways, and NFM timing specification.
We adopted the timing specification of a commercial NFM [2]
which is shown in TABLE I.

TABLE I
BASIC LATENCY INFORMATION OF SLC NAND FLASH MEMORY

Operation Latency (secμ)

 Page write operation 251.5
 Page read operation 76.5
 Block erase operation 1500.2

TABLE II

INFORMATION OF USED TRACES

NAME
THE TOTAL
NUMBER OF
REQUESTS

AVERAGE
WRITE

LENGTH
(PAGES)

DETAILS

1 distilled 300,000 4.02 FAT32 / Various
PC usage

2 Download 3722 10.06 FAT32 / Large file
downloads

3 Synthetic
Ran 300,000 0.56 Synthetic Trace /

Random

4 Synthetic
Seq 50,000 16.00 Synthetic Trace /

Sequential

We configured each simulator to target an NFSD whose
total capacity is 16GB. It also has 65536 blocks and each
block has 4KB-sized 64 pages. Based upon this setting, we
measured the performance of FTLs, while varying the number
of channels and ways. We consider five different architectures
– 1x1, 2x1, 2x2, 4x2, and 4x4 architectures, where the first
number and the second number indicate the number of
channels and the number of ways, respectively. We also set
the operating frequency of a channel to 64MHz at which the
channel will be fully utilized by four interleaved writes
according to the specification of TABLE I.

TABLE II summarizes the traces we used in this
experiment. The first two traces are real traces collected from
real systems. Trace 1, “distilled” was collected by running
several programs on a PC [6]. Trace 2, “Downloads” was
collected using DiskMon [7], while a large file is being
downloaded from the Internet to a 64GB solid-state disk
whose file system was FAT32.

One the other hand, Trace 3 and 4 were synthetic traces.
The address sequences of both traces were created based on
random number generation. In case of Trace 4, the data size
per request was set to 128 sectors to measure the efficiency of
FTLs for sequential data access patterns. The data size per
request in Trace 3 was set smaller than or equal to the page
size, and it varied from 1 sector to 8 sectors to appreciate their
efficiency for random short data patterns. The fourth column
in TABLE II shows the average data size per request for each
trace. These numbers implies the utilization of channels and
ways. More specifically, the trace with a larger number will be
more benefited by the increase of channels and ways, since it
is possible to split the data over the channels and ways.

B. Oracle FTL
For comparison purpose, we introduce an ideal FTL called

oracle FTL. It is only realizable with the offline analysis of
the target trace, since it assumes that the future of the trace is
known and that there is no computing overhead. Hence, it
cannot be implemented in practice. The oracle FTL allocates a
pair of channel and way to each data such that the allocation
never induces any garbage collection. For this reason, it can
maximally utilize the given hardware resources. Note that the
oracle FTL does not split the data when its size is smaller than
a page as the proposed method. In other words, it sets the
performance upper bound of FTLs.

C. Comparison metrics
To measure the impact of our method on performance, we

define several metrics as follows:
 Throughput is a metric to measure the quantity of data

processed in a second for a given architecture and trace pair.
Its unit is MB/s. This metric is used for evaluating the
performance of FTLs and address translation schemes
addressed in Section III in absolute value.
 Channel utilization (CU): is a metric to assess how
efficiently channels are utilized. It is defined as the
throughput of an FTL normalized to the sum of channel

Authorized licensed use limited to: Yonsei University. Downloaded on October 11, 2009 at 10:03 from IEEE Xplore. Restrictions apply.

IEEE Transactions on Consumer Electronics, Vol. 55, No. 3, AUGUST 2009 1398

bandwidths. Note that the sum of channel bandwidths means
the maximum bandwidth provided by all physical channels.
Hence, it is proportional to the number of channels.
 Oracle-aware channel utilization (OCU): is defined as the
CU of an FTL over the CU of the oracle FTL for comparing
the performance of an FTL with that of the oracle FTL.
 Relative oracle-aware channel utilization (ROCU): is a
metric to evaluate the performance scalability of FTLs. In our
work, it is desirable that the OCU of an FTL-MM is greater
than or equal to that of FTL-SS, this means that the increased
hardware resource (channels and ways) is utilized more
efficiently than (or as effectively as) in FTL-SS. For this
purpose, we define the ROCU of an FTL-MM as its OCU over
the OCU of the corresponding FTL-SS.

D. Comparison of Address Translation Schemes
We extended the three FTL-SSs (BAST, FAST, and

Superblock FTL) for the 4-channel / 4-way architecture by using
our method. For each FTL-MM, we also created four variants
and they employ the address translation schemes addressed in
Section III.D. The performance comparison of these variants is
shown in Fig. 5. We omit two schemes – HWC and HCW in this
comparison, since they cannot exploit the concurrency for two
sequential writes as shown in Fig. 3. The black and white bars
correspond to WC and CW, respectively. WC always shows
higher throughput for all FTL-MMs. The channel striping
achieves higher throughput compared to the way interleaving by
complete overlapping of writes. The advantage of using WC
decreases when the data size per request is short as shown in Fig.
5 (c), since the overlapped writes rarely occur.

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

0

20

40

60

80

100

120

Superblock BAST FAST

Th
ro

ug
hp

ut
 (M

B
/s

)

FTLs

WC

CW

0

20

40

60

80

100

120

Superblock BAST FAST

Th
ro

ug
hp

ut
 (M

B
/s

)

FTLs

WC

CW

0

20

40

60

80

100

120

Superblock BAST FAST

Th
ro

ug
hp

ut
 (M

B
/s

)

FTLs

WC

CW

0

20

40

60

80

100

120

Superblock BAST FAST

Th
ro

ug
hp

ut
 (M

B
/s

)

FTLs

WC

CW

Fig. 5. Throughput of an 4-channel / 4-way architecture using three FTLs
with two different bit positioning for four traces.

E. Channel Utilization of Oracle FTL

We show the CUs of the oracle FTL for four traces in Fig. 6.
Even though the oracle FTL is ideal, it cannot fully exploit the
channel bandwidth, since its CU depends on the data length.

First, we compare the CUs for all traces at the 1x1 architecture.
The oracle FTL achieves the highest CU for Trace 4, while
showing the lowest CU for Trace 3. More precisely, the ranks of

traces in terms of CU are closely related to their average data size
which is shown in Table II. The larger the data size is, the higher
the CU is. The frequency of the write operations with longer data
is lower than that of the write operations with shorter data to
store the same amount of data. Hence, shorter data writes waste
more time for the Cmd and Data phase.

Next, we examine the CUs at other architectures. If the
number of ways increases, while fixing the number of channels,
the CU will increase until the channel is fully saturated. The
increasing ratio critically depends on the data length. In the
opposite case, the CU will decrease if the data length is not long
enough to saturate the channels. If the data length is long enough,
the CU will be unchanged. If both numbers change at the same
time, the CU will be placed between the two boundary values.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1x1 2x1 2x2 4x2 4x4

C
ha

nn
el

 U
til

iz
at

io
n

NAND flash configuration (Channel x Way)

Trace 1

Trace 2

Trace 3

Trace 4

Fig. 6. The channel utilization of the oracle FTL for four traces.

F. Channel Utilization of Real FTLs

We compare the CUs of real FTLs with that of the oracle FTL in
Fig. 7 through Fig. 9. The comparison was performed for all traces
with various architectural choices, while varying the portion of log
blocks over the entire blocks (log ratio) from 5% to 15%. The log
ratio is not critical in a multi-channel / multi-way architecture
except for BAST. 5% of log blocks are enough for reasonable
performance as in for the single-channel / single-way architecture
[5]. The different trend observed in BAST is mainly due to its low
block-level associativity rather than the architectural effect, since it
shows a large discrepancy depending on the log ratio at the 1x1
architecture for Trace 4. Other than the above case, the CUs of all
FTLs well follow the CUs of the oracle FTL, even though their gap
enlarges as the number of channels and/or ways increases.
Therefore, the FTLs may have the performance scalability issue.
For the quantitative analysis of the scalability issue, we compute
ROCU for each FTL and summarize the results in TABLE III
through TABLE V. We omit the results when the log ratio is 15%,
since the results are similar, when the log ratio is 10%.

ROCU represents the OCU of an FTL at a specific
architecture relative to that of the FTL at the 1x1 architecture.
It clearly indicates the scalability of an FTL with respect to the
number of channels and ways. The average ROCUs of FAST

Authorized licensed use limited to: Yonsei University. Downloaded on October 11, 2009 at 10:03 from IEEE Xplore. Restrictions apply.

S.-H. Park et al.: Design and Analysis of Flash Translation Layers for Multi-Channel NAND Flash-based Storage Devices 1399

and Superblock FTL for the all combinations of traces and log
ratios are higher than 0.89. That is, the average performance
degradation of both FTLs is only 10% in the worst case.

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1x1 2x1 2x2 4x2 4x4

C
ha

nn
el

 U
til

iz
at

io
n

NAND flash configuration (Channel x Way)

Oracle

5%

10%

15%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1x1 2x1 2x2 4x2 4x4
C

ha
nn

el
 U

til
iz

at
io

n

NAND flash configuration (Channel x Way)

Oracle

5%

10%

15%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1x1 2x1 2x2 4x2 4x4

C
ha

nn
el

 U
til

iz
at

io
n

NAND flash configuration (Channel x Way)

Oracle

5%

10%

15%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1x1 2x1 2x2 4x2 4x4

C
ha

nn
el

 U
til

iz
at

io
n

NAND flash configuration (Channel x Way)

Oracle

5%

10%

15%

Fig. 7. Channel Utilization of BAST

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1x1 2x1 2x2 4x2 4x4

C
ha

nn
el

 U
til

iz
at

io
n

NAND flash configuration (Channel x Way)

Oracle

5%

10%

15%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1x1 2x1 2x2 4x2 4x4

C
ha

nn
el

 U
til

iz
at

io
n

NAND flash configuration (Channel x Way)

Oracle

5%

10%

15%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1x1 2x1 2x2 4x2 4x4

C
ha

nn
el

 U
til

iz
at

io
n

NAND flash configuration (Channel x Way)

Oracle

5%

10%

15%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1x1 2x1 2x2 4x2 4x4

C
ha

nn
el

 U
til

iz
at

io
n

NAND flash configuration (Channel x Way)

Oracle

5%

10%

15%

Fig. 8. Channel Utilization of FAST

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1x1 2x1 2x2 4x2 4x4

C
ha

nn
el

 U
til

iz
at

io
n

NAND flash configuration (Channel x Way)

Oracle

5%

10%

15%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1x1 2x1 2x2 4x2 4x4

C
ha

nn
el

 U
til

iz
at

io
n

NAND flash configuration (Channel x Way)

Oracle

5%

10%

15%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1x1 2x1 2x2 4x2 4x4

C
ha

nn
el

 U
til

iz
at

io
n

NAND flash configuration (Channel x Way)

Oracle

5%

10%

15%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1x1 2x1 2x2 4x2 4x4

C
ha

nn
el

 U
til

iz
at

io
n

NAND flash configuration (Channel x Way)

Oracle

5%

10%

15%

Fig. 9. Channel Utilization of Superblock FTL

Even in BAST, its average ROCU is not far behind those of
FAST and Superblock FTL except for Trace 4. The log blocks
are rapidly used up and a large amount of garbage collections
eventually occur, due to the low block-level associativity of
BAST and the sequential characteristics of Trace 4.

Some ROCUs at specific architectures and traces are larger
than 1, meaning that the FTL-MM manages data and hardware
resources more efficiently than its corresponding FTL-SS.
This is due to the concurrent executions of erase and
read/write operations on different NFMs. More precisely, an
NFM can serve a write or read operation, while another NFM
on a different channel (or way) is erased. We call this
behavior hidden erase. The hidden erase is maximized for
random short data patterns, which are exactly the case for
Trace 3. It is also more effective to the FTLs which incur a lot
of erase operations like BAST.

TABLE III
ROCU OF BAST

ARCHITECTURES TRACE # LOG RATIO(%)
2X1 2X2 4X2 4X4 AVERAGE

5 0.97 0.85 0.83 0.71 0.84 1
10 0.98 0.88 0.84 0.73 0.86
5 1.00 0.98 0.96 0.88 0.96 2
10 0.99 0.96 0.93 0.86 0.93
5 0.97 1.64 3.23 3.82 2.42 3
10 1.00 1.82 2.18 2.18 1.80
5 0.85 0.76 0.67 0.54 0.71 4
10 0.95 0.89 0.80 0.66 0.83

TABLE IV

ROCU OF FAST
ARCHITECTURES TRACE # LOG RATIO(%)

2X1 2X2 4X2 4X4 AVERAGE
5 0.99 0.92 0.91 0.82 0.91 1
10 1.27 1.17 1.08 0.85 1.09
5 0.98 0.98 0.95 0.90 0.95 2
10 1.02 1.00 0.97 0.90 0.97
5 1.00 0.95 0.97 0.97 0.97 3
10 1.00 0.95 0.97 0.97 0.97
5 1.03 1.00 0.96 0.75 0.93 4
10 1.05 1.03 0.99 0.78 0.96

TABLE V

ROCU OF SUPERBLOCK FTL
ARCHITECTURES TRACE # LOG RATIO(%)

2X1 2X2 4X2 4X4 AVERAGE
5 1.00 0.74 0.94 0.89 0.89 1
10 1.00 0.94 0.93 0.85 0.93
5 0.99 0.96 0.93 0.86 0.93 2
10 0.99 0.96 0.93 0.86 0.93
5 1.00 0.90 0.89 0.89 0.92 3
10 1.00 0.90 0.89 0.89 0.92
5 1.04 1.03 0.99 0.78 0.96 4
10 1.04 1.03 1.00 0.78 0.96

G. Distribution of Erase Operations
Uniform distribution of erases over NFM cells is crucial to

prolong the lifetime of an NFM. Similarly, the distribution
uniformity over the NFMs is important in multi-channel /
multi-way architecture.

Fig. 10 shows the erase count distributions of Superblock
FTL at the 4x4 architecture (log ratio = 10%). Fig. 10 (b) for
Trace 2 is not our concern, since the total erase counts is too
small. Fig. 10 (c) and Fig. 10 (d) show the uniform

Authorized licensed use limited to: Yonsei University. Downloaded on October 11, 2009 at 10:03 from IEEE Xplore. Restrictions apply.

IEEE Transactions on Consumer Electronics, Vol. 55, No. 3, AUGUST 2009 1400

distributions for Trace 3 and Trace 4, respectively. Even
though their data sizes are quite different, their address
sequences are random. These results indicate that the erase
count uniformity is strongly dependent on the locality of the
address sequences rather than the data length. The distribution
shown in Fig. 10 (a) further supports this claim, since the
distribution is less uniform than it is in Fig. 10 (c) and Fig. 10
(d) due to the locality of the address sequence of Trace 1.
Even though we have shown the analysis of the erase count
distribution over the NFMs, our method does not tackle this
issue directly, which we will investigate as future work.

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Er
as

e C
ou

nt
s

NFM #

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Er
as

e C
ou

nt
s

NFM #

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Er
as

e C
ou

nt
s

NFM #

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Er
as

e C
ou

nt
s

NFM #

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4
Fig. 10. Erase Counts of 16 NFMs at the 4x4 architecture by Superblock
FTL.

V. CONCLUSION
We proposed a general method to design FTL-MMs. We

proved its generality by applying it to three well-known FTL-
SSs – BAST, FAST, and Superblock FTL. The advantage of
our method is that it requires little design time to extend from
FTL-SSs. Additionally, its implementation scheme incurs little
computation overhead for indexing blocks. The extensive
experimental results we obtained show that the FTL-MMs
generated by our method are comparable to the oracle FTL. It
has been also shown that the FTLs are scalable with respect
the number of channels and ways from the performance
perspective. In addition, we analyzed the erase count
distribution over the NFMs for the first time. As future work,
we will extend the proposed method to consider the address
locality in the address translation scheme for improving the
distribution uniformity of erase counts.

REFERENCES
[1] J.U. Kang, J.S. Kim, C. Park, H. Park, J. Lee, “A multi-channel

architecture for high-performance NAND flash-based storage system,”
Journal of Systems Architecture, vol.53, Issue 9, pp. 644-658, Sep. 2007.

[2] Hynix Semiconductor Inc., HY27UG088G(5/D)B Series 8Gbit
(1Gx8bit) NAND Flash Rev0.2, http://www.hynix.com/datasheet/pdf
/flash/ HY27UG088G(5_D)B (Rev0.2).pdf, January 2008.

[3] J. Kim, J.M. Kim, S.H. Noh, S.L. Min, and Y. Cho, "A space-efficient
flash translation layer for CompactFlash systems," Consumer
Electronics, IEEE Transactions on, vol.48, no.2, pp.366-375, May 2002.

[4] S.W. Lee, W.K. Choi, and D.J. Park, “FAST : An efficient flash
translation layer for flash memory,” EUC Workshops 2006, pp.879-887,
2006.

[5] J.U. Kang, H. Jo, J.S. Kim, J. Lee, “A superblock-based flash translation
layer for NAND flash memory,” EMSOFT’06, Oct. 2006.

[6] L.P. Chang and T.W. Kuo, "An adaptive striping architecture for flash
memory storage systems of embedded systems," Real-Time and
Embedded Technology and Applications Symposium, 2002.
Proceedings. Eighth IEEE ,pp. 187-196, 2002

[7] Mark Russinovich, DiskMon for Windows v2.01,
http://technet.microsoft.com/en-us/sysinternals/bb896646.aspx, Nov.
2006.

[8] C. Park, Talawar, P., D. Won, M.J. Jung, J.B. Im, S. Kim, and Y. Choi,
“A High Performance Controller for NAND Flash-based Solid State
Disk (NSSD)," Non-Volatile Semiconductor Memory Workshop, 2006.
IEEE NVSMW 2006. 21st , vol., no., pp.17-20, 12-16 February 2006.

[9] Jim Cooke, “Flash Memory Techonology Direction,” WinHEC 2007,
May 2007.

[10] H. Kim, S. Ahn, “BPLRU: A Buffer Management Scheme for Improving
Random Writes in Flash Storage,”, 6th USENIX Conference on File and
Storage Technologies, 2008.

[11] H. Kim, and S. Lee, “A new flash memory management for flash storage
system,” in Proc. Computer Software and Applications Conference, pp.
284-289, 1999.

[12] M.L Chiang, P. C.H. Lee, R.C. Chang, “Cleaning policies in mobile
computers using flash memory,” Journal of Systems and Software,
vol.48, no.3, pp.213-231, 1999.

Sang-Hoon Park received the B.S. degree in electrical
and electronic engineering from Yonsei University in
Seoul, Korea, in 2009. He is currently a M.S. candidate in
Yonsei University. His research interests include System
on Chip, NAND flash based mass storage architecture
and system architecture.

Seung-Hwan Ha received the B.S. degree in electrical
and electronic engineering from Yonsei University in
Seoul, Korea, in 2008. He is currently a M.S. candidate in
Yonsei University. His research interests include System
on Chip, NAND flash based mass storage architecture
and system architecture.

Kwanhu Bang (S’06) received the B.S. degrees in
computer science and in electronic engineering and the
M.S. degree in electrical and electronic engineering from
Yonsei University, Seoul, Korea, in 2006 and 2008,
respectively. He is currently a Ph.D. candidate in the
School of Electrical and Electronic Engineering at Yonsei
University. His research interests include bio-

computation, flash memory applications, and system-level low-power design.

Eui-Young Chung (S’99-M’06) received the B.S. and
M.S. degrees in electronics and computer engineering
from Korea University, Seoul, Korea, in 1988 and 1990,
respectively, and the Ph.D. degree in electrical
engineering from Stanford University, Stanford, CA, in
2002. From 1990 to 2005, he was a Principal Engineer
with SoC R&D Center, Samsung Electronics, Yongin,

Korea. He is currently an Associate Professor with the School of Electrical
and Electronic Engineering, Yonsei University, Seoul, Korea. His research
interests include system architecture, bio-computing, and VLSI design,
including all aspects of computer-aided design with the special emphasis on
low power applications and flash memory applications.

Authorized licensed use limited to: Yonsei University. Downloaded on October 11, 2009 at 10:03 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

