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Abstract — NAND Flash-based Storage Devices (NFSDs) 

have been replacing the conventional magnetic storage 
devices in many consumer electronic systems. One of the 
advantages of NFSDs is their read/write bandwidth, which is 
higher than that of the magnetic storage devices. For further 
increase of their bandwidth, high-end NFSDs employ multi-
channel and multi-way architectures in which it is possible to 
access the NAND Flash Memories (NFMs) in parallel for 
amortizing the long latency of NFMs. Even though this 
architecture provides higher bandwidth from the hardware 
perspective, the overall performance of an NFSD critically 
depends on how efficiently the multiple channels and ways are 
utilized. In this regard, the key design component is an 
intermediate software layer called Flash Translation Layer 
(FTL), since it manages the hardware resources as well as 
data. To the best of authors’ knowledge, this is the first work 
to propose a general method to design an FTL for multi-
channel / multi-way NFSDs (FTL-MM). The proposed design 
method consists of two steps. First, we design an FTL for a 
single-channel / single-way NFSD (FTL-SS). Second, we 
extend the FTL to support an NFSD with an arbitrary number 
of channels and ways. To prove the generality and 
effectiveness of the proposed method, we apply the method to 
three well-known FTLs. The experimental results indicate that 
the FTLs enhanced by our approach are comparable to the 
ideal FTL and that their performance is scalable to various 
channel / way architectures. Quantitatively speaking, the 
average channel utilization decreases by at most 10%, when 
we increase the number of channels and ways up to four1. 
 

Index Terms — NAND Flash Memory (NFM), storage, Multi-
channel, Multi-way, Flash Translation Layer (FTL) 

I. INTRODUCTION 
Magnetic storage devices such as Hard Disk Drives 

(HDDs) have been the de-facto standard mass-storage devices 
in most electronic devices. However, recently introduced 
NAND Flash-based Storage Devices (NFSDs) have been 
gradually replacing HDDs, since they are superior to HDDs in 
several aspects – low power, small form factor, and shock-
resistance. Furthermore, they enlarge the application area of 
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storage devices thanks to the small form factor. NFSDs are 
now employed in many hand-held devices such as cellular 
phones, Mobile Internet Devices, digital cameras in addition 
to the traditional applications such as Personal Computers and 
digital TVs. More importantly, NFSDs provide a higher Input 
/ Output (IO) bandwidth than conventional magnetic storage 
devices. This is an unbeatable merit of NFSDs in data-
intensive applications, since the CPU-IO performance gap has 
become larger. More precisely, the CPU performance 
improvement ratio in the last decade is roughly 20 times larger 
than the HDD performance improvement ratio for the same 
period. 

The key challenge in improving the performance of NFSDs 
is how to mitigate the long latency of NAND Flash Memories 
(NFMs). This problem has become even severer due to the 
advent of Multi-Level Cell (MLC) NFMs that need longer 
data access time than the conventional NFMs called Single-
Level Cell (SLC) NFMs. The merit of MLC NFMs over the 
SLC NFMs is bit cost. Their bit cost is much lower than that 
of SLC NFMs, since they store multiple bits in a cell while 
SLC NFMs store a bit per cell. 

Typically, NFSDs consist of two parts – NFMs and a 
controller. The controller is in charge of managing the 
incoming data and the hardware resources including NFMs. 
For this reason, the overall performance of an NFSD critically 
depends on not only its architecture, but also its management 
policy. The management policy is typically implemented as an 
intermediate software layer called Flash Translation Layer 
(FTL). From the data management perspective, one of its 
important roles is to translate the logical addresses of the 
incoming data to physical addresses. This translation requires 
non-trivial computational efforts due to the limited lifetime of 
NFM cells, erase-before-write and other complications.  

The architecture of an NFSD controller affects the 
computation of FTLs. For instance, contemporary NFSD 
controllers employ a multi-channel and multi-way architecture 
for increasing read/write bandwidth. In this architecture, 
multiple communication paths (i.e., channels and ways) are 
provided between the controller and NFMs. Even though such 
architecture provides more bandwidth from the hardware 
perspective, the effective bandwidth of an NFSD critically 
depends on how efficiently the increased hardware resources are 
utilized by an FTL. Although many previous works studied the 
performance improvement of FTLs, no published work has 
addressed the performance issue of FTLs for multi-channel and 
multi-way NFSDs. That is, the performance issue has been 
studied only in single-channel and single way NFSDs. 

Authorized licensed use limited to: Yonsei University. Downloaded on October 11, 2009 at 10:03 from IEEE Xplore.  Restrictions apply. 



S.-H. Park et al.: Design and Analysis of Flash Translation Layers for Multi-Channel NAND Flash-based Storage Devices 1393

In this work, we focus exactly on the shortcomings of 
previous FTL works with the following contributions. First, 
we propose a general design method of FTLs targeting multi-
channel and multi-way NFSDs. Second, we quantitatively 
prove the effectiveness of our method by applying it to three 
well-known FTLs to make them support multi-channel and 
multi-way NFSDs. Finally, we define the performance upper 
bound of FTLs by introducing the oracle FTL that is only 
possible by the offline analysis of traces. 

The rest of this paper is organized as follows. In Section II, 
we summarize the basics of NFSDs and the related work. In 
Section III, we describe the proposed method in detail. Then, 
we show its effectiveness through the extensive experimental 
results in Section IV followed by a conclusion in Section V.  

II. PRELIMINARIES AND RELATED WORK 

A. NFSD Architecture 
A typical NFSD architecture is shown in Fig. 1. An NFSD 

consists of two parts – an NFSD controller and NFM chips.  
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Fig. 1. A typical NFSD architecture. 

 
The controller and NFM chips communicate with each 

other through a shared bus called channel. Due to the long 
latency of NFM chips, the channel often becomes the 
performance bottleneck of NFSDs. There are two popular 
ways to improve the channel performance. One of them is to 
connect multiple NFM chips to a channel such that the 
channel accesses them in a time-multiplexed manner to hide 
their long latencies. We call this technique n-way interleaving 
if n NFM chips are connected to a single channel. The other 
technique called channel striping is to increase the number of 
channels for accessing NFM chips in parallel. In other words, 
the channel bandwidth is proportional to the number of 
channels.  

 
Example 1: Fig. 2 shows how a multi-channel / multi-way 

NFSD architecture efficiently manages the write operations, 
using a 2-channel / 4-way NFSD architecture. A write 
operation consists of three phases – Cmd, Data, and Program. 
The write command and the data to be written are asserted to 

an NFM in Cmd phase and in Data phase, respectively. In the 
Program phase, the asserted data is written to the NFM 
memory cells. The time required for the Program phase is 
much longer than the other two phases and the interleaving 
technique effectively hides the long latency of this phase by 
overlapping multiple write operations within a single channel. 
In Channel 0, we only need three ways, since the latency of 
three overlapped write operations is long enough to hide the 
latency of the Program phase, hence increasing the number of 
ways larger than 3 is of no use from the performance 
perspective. Further parallelism exploitation is possible by 
having more channels, since the interleaved write operations 
are also applicable to the additional channels as shown in 
Channel 1. Similarly, read operations are also benefited in this 
architecture.  

 

 
Fig. 2. Concurrent interleaved write operations in 2-channel / 4-way 
NFSD architecture. 

 
The NFSD controller includes several sub-components. The 

host interface logic is in charge of communicating with the 
host machine. Also, many higher-performance NFSDs employ 
DRAMs as caches for increasing the performance by 
exploiting the data locality principle. A cache buffer controller 
inside the NFSD controller manages the cache buffer. The last 
component inside the NFSD controller is a micro-controller 
on which an intermediate software layer called Flash 
Translation Layer (FTL) is running. The FTL manages the 
overall hardware resources and incoming data, hence its 
quality critically affects on the overall performance of NFSDs. 
Note that the channels and ways are also managed by the FTL. 
We will discuss more details of FTLs in Section II.C. 

B. NFM chip 
An NFM chip has large memory cell arrays that store the 

incoming data. The memory cells in an NFM chip are 
hierarchically managed. More specifically, each memory array 
consists of fixed-size blocks and a block is partitioned into 
fixed-size pages. A page is also partitioned into fixed-size 
sectors. A block is the basic unit of erase operations, while a 
page is the basic unit of read and write operations. 

Even though NFM chips are advantageous over the 
conventional non-volatile memories and magnetic storages, 
they still have a few weak points. First, they have an erase-
before-write property, meaning that a block erase must be 
preceded to update even a single page inside the block. 
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Moreover, the time for a block erase operation is several times 
longer than write / read operations. Hence, frequent block 
erase operations will severely decrease the overall 
performance. Second, a block of NFMs has its limited lifetime 
that is often measured by the maximum erase count. For the 
NFM reliability, it is very important to write data to blocks as 
uniformly as possible. Finally, the read / write performance of 
NFM chips is asymmetric. For instance, the write performance 
is less than 30% of the read performance in [2]. For this 
reason, the write performance improvement is a challenging 
issue in NFSD design. 

C. Flash Translation Layer 
Flash Translation Layer (FTL) is an intermediate software 

layer between the host file system and NFMs. Its major role is 
translating the logical addresses given by the host system into 
the physical addresses of NFMs. In addition, FTLs perform 
some extra tasks such as wear-leveling and garbage collection. 
These tasks are mainly required to hide the weak points of 
NFMs mentioned in Section II.B.  

Wear-leveling is a management policy to prolong the 
lifetime of flash cells by evenly distributing the number of 
erasing to each block. For this purpose, it often requires the 
data movement among flash blocks, and then the flash blocks 
only with invalid pages are erased and reserved for future use. 
We call this procedure garbage collection. Since these tasks 
may incur inordinate extra erase operations, the performance 
of NFSDs critically depends on the quality of these tasks. 
Hence, the reduction of erase operations has been the main 
objective of previous works. 

One intuitive address-mapping scheme is to translate the 
logical addresses into the physical addresses in page-level, 
since every read / write data is processed in the unit of page in 
NFMs. This idea was employed in the FTL called page-
mapped FTL [11], [12]. This scheme translates a logical page 
address into the address of any unused physical page and the 
mapping information is stored in an address-mapping table. A 
drawback of this scheme comes from the size of the address-
mapping table, since its size is proportional to the number of 
pages. For this reason, it is rarely used in large capacity 
NFSDs. 

To mitigate this issue, FTLs with two-level address 
translation schemes were proposed. We call them block-
mapped FTLs. Simply speaking, the block-mapped FTLs 
perform the address translation in two steps. In the first step, a 
logical page is mapped to one of any unused physical blocks, 
and the mapping information is recorded into the address-
mapping table. Note that the size of this address-mapping 
table is much smaller than that of page-mapped FTLs, since a 
block usually consists of 64 or 128 pages in conventional 
NFMs. In the second step, a physical page inside the chosen 
block is allocated to the logical page. Also, most block-
mapped FTLs employ the concept of temporary blocks for 
further accelerating the mapping table search especially for 
write operations. This concept was first introduced in [3], 

where the authors classified the blocks into two categories – 
data blocks and log blocks. The log blocks are temporary 
storage blocks and the number of log blocks is much smaller 
than that of the data blocks. In a write operation, data are 
always written to the log block, hence the mapping table 
search time is marginal due to the small number of log blocks. 
However, after the log blocks are fully used up, the FTLs have 
to move the data in log blocks to data blocks for future write 
operations. These extra operations can severely degrade the 
overall system performance and more recent block-mapped 
FTLs this attempted to reduce these extra operations. 

The aforementioned FTLs mostly focused on the address-
mapping granularity only for a specific architecture, i.e. 
single-channel / single-way architecture. They assumed that 
all blocks (pages) have identical physical characteristics in 
block-mapped FTLs (page-mapped FTLs). However, block-
mapped (page-mapped) FTLs need to distinguish the pages (or 
blocks) depending on their physical locations in the multi-
channel / multi-way architecture, since their physical locations 
affect on the overall performance. More specifically, the 
efficiency of channel striping and interleaving critically 
depends on the choice of blocks that determines the parallel 
accessibility of NFMs.  This is exactly what we tackle in this 
paper, and we will present the details of our method in Section 
III. 

D. Related Work 
Most previous works focused on the single-channel / 

single-way architecture. There are only a few works on multi-
channel / multi-way architectures. The work in [1] analyzed 
the impact of multiple channels and multiple ways on the 
performance of NFSDs. A similar work can be found in [8]. 
The authors used a 2-channel / 4-way NFSD architecture, and 
its performance was about 1.7 times higher than the compared 
HDD. The authors in [6] proposed an improved channel 
striping technique for increasing the channel utilization by 
arranging the channel access order adaptive to the size of 
incoming data.  Even though these techniques improve the 
overall system performance, they did not analyze the 
computing overhead incurred to the FTLs. More importantly, 
none of these works showed that the performance gain 
achieved by their methods is scalable with respect to the 
number of channels and ways. The scalability is a very 
important metric to measure the general applicability of a 
technique to an arbitrary number of channel / way 
architectures. If a technique is not scalable, it cannot be used 
for higher performance NFSDs which employ more channels 
and ways. 

III. FTL FOR MULTI-CHANNEL / MULTI-WAY NFSDS 

A. Overview 
The proposed FTL design method assumes that there is 

already an FTL designed for single-channel / single-way 
NFSDs. The objective of the proposed method is to extend the 
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FTL for single-channel / single-way (FTL-SS) to support 
multi-channel / multi-way NFSDs (FTL-MM), while 
maintaining the efficiency of the extended FTL greater than or 
equal to that of FTL-SS. For this reason, we do not focus on 
designing an FTL-SS in this work. However, we show the 
effectiveness and generality of our method by applying it to 
several well-known FTLs. For this reason, an FTL extended 
by our method inherits the nature of its single-channel / 
single-way version. We briefly summarize these FTLs in 
Section III.B. Then, we address the critical design parameters 
of our method in Section III.C. In Sections III.D and III.E, we 
describe the address translation scheme in our method and the 
address-mapping structure we propose, respectively. 

B. FTLs for single-channel / single-way NFSDs 
Many research groups have performed the research on 

FTL-SSs. Most of these FTLs aimed at reducing the count of 
extra operations (i.e., valid page copying and erase operations), 
since they can severely degrade the overall performance of 
NFSDs. The occurrence of extra operations is mainly due to 
the wear-leveling and garbage collection. 

Among many previous FTLs, we will summarize three 
well-known FTLs – BAST [3], FAST [4], and Superblock 
FTL [5]. We also utilize them in two aspects. First, we extract 
the common features of these three FTLs. Based on the 
features extracted, we build a general method for extending 
FTL-SSs. Second, we utilize them to validate the generality 
and effectiveness of our method through extensive 
experiments.  

Simply speaking, the previous FTLs mostly employed a 
block-mapped address translation scheme, hence being 
conceptually similar to each other. Their major difference lies 
in the associativity between the data blocks and log blocks, 
which critically affects the number of the extra operations. 

In the following, we summarize the aforementioned three 
FTLs from the associativity perspective. 

 BAST (Block-Associative Sector Translation) [3] is a log 
block based block-mapped FTL. When a write operation is 
asserted with data and its corresponding logical address, 
BAST first searches a block from an address-mapping table. 
Then, it allocates a page based on the page offset which 
corresponds to the lower bits of the logical address. There 
are three types of blocks in BAST – free block, data block, 
and log block. A free block is a clean storage and is reserved 
for future data writes. A data block allocates a page for 
storing the data being written. We call the allocated page 
valid page. If the logical address of a write operation is 
identical to that of one of previous writes, a valid page will 
be allocated for the new write operation. In this case, BAST 
invalidates the page and writes the new data to a log block. 
We call this procedure an update. BAST allocates a single 
log block for each data block, whenever an update occurs in 
the data block for the first time. For later updates, the same 
log block is utilized. In other words, there is one-to-one 
mapping relationship between a data block and a log block. 
A log block may also contain invalid pages if the same 

logical address is asserted more than twice. A data block or 
a log block is called full if it has no more clean pages. If a 
logical address of a write operation is mapped to a data 
block or a log block which is full, then an extra operation 
called the merge operation is performed to make room for 
the new data. The merge operation takes one of free blocks 
and copies valid pages from the data block and the 
corresponding log block. Then, BAST erases the data block 
and the corresponding log block and returns them to the pool 
of free blocks. The merge operations incur a large amount 
of copying and erase operations, which critically degrades 
the overall performance of NFSDs.  
 FAST (Fully-Associative Sector Translation) [4] is similar 
to BAST. However, it resolves the block-thrashing problem 
and frequent merge operations of BAST by introducing 
fully associative random log blocks and sequential log 
blocks. An analogy can be found in the conventional cache 
design. BAST and FAST correspond to the direct-mapped 
cache and the fully associative cache, respectively. Hence, 
FAST incurs more computing overhead than BAST. 
 Superblock FTL [5] can be considered as a trade-off 
between BAST and FAST. Both FTLs are two extreme 
cases in managing log blocks. On the other hand, 
Superblock FTL partitions into several groups called 
superblocks rather than a single large group as is done in 
FAST. A super block is associated with only part of data 
blocks rather than all data blocks. According to the 
aforementioned analogy, Superblock FTL corresponds to the 
N-way set-associative cache, which is a trade-off between 
the direct-mapped cache and the fully associative cache. It 
also provides the full associativity among the pages within a 
superblock. 

C. Critical Design Parameters 
Compared to FTL-SSs, the FTL-MMs have an additional 

issue – the mapping between a logical address and NFMs. The 
mapping scheme should well distribute the incoming write 
data to maximally exploit the channel and way concurrency. 
We can achieve the maximum concurrency by splitting the 
data into as many pieces as the number of NFMs (the product 
of the number of channels and the number of ways). The 
problem occurs when the length of incoming data is shorter 
than the page length. In that case, we waste a lot of storage 
space, since only a small portion of a valid page will be used 
for storing the data. The waste of storage space will eventually 
incurs more merge operations later, since the log blocks and 
data blocks will be used up quickly. For this reason, we do not 
consider the data splitting when the data length is shorter than 
the length of a page. 

On the other hand, the log blocks in each NFM should be 
consumed in a similar rate. Otherwise, a particular NFM (or 
NFMs) will use up its log blocks quickly and incurs the merge 
operations frequently. In other words, the performance 
degradation due to the merge operations is maximally 
postponed when all NFMs have the identical log block 
consumption rate. 
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The other important parameter is scalability. Even though 
more channels and more ways will improve the overall 
bandwidth, this does mean that their utilization is also improved. 
For this reason, the general method for designing an FTL-MM 
should generate an FTL of which channel utilization ratio is 
scalable with respect to the number of channels and ways. 

D. Address Translation Scheme 
Fig. 3 (a) shows the conventional structure of a 32-bit 

logical address. It consists of three fields – block address, 
page address, and sector offset.  The blocks and page 
addresses are used to find the corresponding physical data 
block and page from the address-mapping table, and the sector 
offset is used to represent the offset within a page. Along with 
the logical address, the host system sends the data length in 
terms of sectors and the operation mode (read or write).  

 

(a) Conventional Structure

(b) Four Possible Structure for Multi-channel / Multi-way Architectures

HWC and HCW

CW

WC

32-bit Logical address

(c) Timing Diagrams Corresponding to the structures in (b)

Block Address(B) PageAddress(P) Sector Offset (S)

Way(W) Channel(C) B P S

C W B P S

B P C W S

B P W C S

HWC

HCW

CW

WC

 
Fig. 3. Structures of 32-bit logical address and timing diagrams 
corresponding to the structures. 

 
In the multi-channel / multi-way architecture, it is necessary 

to transform the conventional logical address structure to 
handle the channel and way mapping issue. For this reason, 
we add two extra fields called C field and W field. Four 
possible choices with these fields are depicted in Fig. 3 (b).  

No matter what structure is chosen, the bit width of the B 
field should be reduced for allocating part of its bits to the two 
additional fields. An NFSD with CH channels and WY ways 
requires log2CH bits and log2WY bits the fields C and W, 
respectively. Even though the bit width of the B field is 
reduced, there is no problem to represent all the blocks, since 
a block is selected by the B field in conjunction with the 
channel field and the way field. Note that the channel and way 
fields do not change the capacity of the block address 
representation. They only alter the mapping relationship 
between the logical addresses and the data blocks. 

Next, a qualitative performance comparison of these four 
structures is shown in Fig. 3 (c). In this example, two 
consecutive write operations are performed in the two-channel 
/ two-way architecture. The data length of each write is one 
page, and their logical addresses are sequential. When both 
fields are allocated in high order bits (HWC and HCW 
structures), two consecutive write operations are mapped to 
the same NFM, hence there is no way to process them 
concurrently. On the other hand, the other two structures (CW 
and WC) allow two consecutive write operations in parallel. 
The WC structure is preferred, since the channel striping 
completely overlaps two write operations. This example 
clearly shows that the multi-channel / multi-way architecture 
will be benefited the WC structure.  

The address translation scheme may not be advantageous 
for a random write pattern that is not the major focus in multi-
channel / multi-way architectures. On the contrary, the 
performance enhancement for random write patterns is 
actively researched in different aspects such as transaction 
scheduling and DRAM cache buffering [10]. Note that the 
proposed method is complementary to these techniques, since 
it simply changes the address translation scheme without 
generating any side effects.  

E. Address Mapping Table 
 
 

0 1 2 3 … CH-1

0

1

…

WY-1

Sector Offset(S)Channel(C)Way(W)Block and Page Address (B)

Channels

W
ay

s

Mapping Table for
NAND flash memory of
Ch2, Wy 1

Physical Page and Block Addresses  
Fig. 4. Address-mapping table for multi-channel / multi-way NFSDs. 

 
We emphasize the scalable design of a address-mapping 

table. More specifically, we design the mapping table to keep 
the nature of the FTL-SS as much as possible.  One obvious 
way to achieve this is to minimize the inter-play among the 
NFMs. In other words, we do not allow the sharing of 
resources among NFMs except for channels. Without this 
policy, large overhead can occur and severely degrade the 
overall performance as shown in Example 2. 

 
Example 2: each NFM has its own log blocks which can be 

accessed by other NFMs. If a page copying occurs across the 
ways, a page is read from one NFM by the NFM controller 
and then sent to the other NFM. The overall latency of this 
procedure is much longer than a page copying in a single 
NFM, since an NFM generally supports such a feature. Even 
worse, the transfer will include the data transfers among the 
NFM controllers and main memory if a page copying occurs 
across the channels. This scenario indicates that the resource 
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sharing may incur large performance overhead. Moreover, the 
performance is not scalable and not predictable with respect to 
the number of channels and the number of ways. 

The non-sharing policy is implemented as a two-
dimensional block array table as shown in Fig. 4, where each 
cell corresponds to a mapping table of each NFM. The 
structure of the mapping table of each cell is identical to that 
of the FTL-SS. The way field and the channel field are used as 
the row index and the column index of each cell, respectively. 
For the selected cell, remaining bits of the logical address 
determine the appropriate block and page. 

As mentioned above, the scalability is one of the benefits of 
this structure. In addition, it has the following advantages. 
First, the computation overhead is marginal, since the 
additional computation, compared to the single-channel / 
single way FTL, is just the channel and way indexing. Second, 
the design time from the single-channel / single-way FTL is 
also marginal, since it just requires expanding a block 
mapping table into a two-dimensional array. Third, the 
structure is general enough to be applicable to any block-
mapped FTLs, since it guarantees the atomicity of the single-
channel / single-way address-mapping table by simply adding 
a layer on top of it. With these advantages, the proposed 
scheme can maximize the utilization of the given hardware 
resources (i.e., channels and ways) without causing any side 
effects. 

IV.  EXPERIMENTAL RESULTS 

A. Experimental Setup 
We implemented a trace-driven simulator for each FTL 

discussed in Section III. For each simulator, it is possible to 
configure some hardware parameters such as the number of 
channels, the number of ways, and NFM timing specification. 
We adopted the timing specification of a commercial NFM [2] 
which is shown in TABLE I.  

TABLE I 
BASIC LATENCY INFORMATION OF SLC NAND FLASH MEMORY 

Operation Latency ( secμ ) 

     Page write operation 251.5 
     Page read operation 76.5 
     Block erase operation 1500.2 

 
TABLE II 

INFORMATION OF USED TRACES 

# NAME 
THE TOTAL 
NUMBER OF 
REQUESTS 

AVERAGE  
WRITE 

LENGTH 
(PAGES) 

DETAILS 

1 distilled 300,000 4.02 FAT32 / Various 
PC usage 

2 Download 3722 10.06 FAT32 / Large file 
downloads  

3 Synthetic 
Ran 300,000 0.56 Synthetic Trace / 

Random 

4 Synthetic 
Seq 50,000 16.00 Synthetic Trace / 

Sequential 
 

We configured each simulator to target an NFSD whose 
total capacity is 16GB. It also has 65536 blocks and each 
block has 4KB-sized 64 pages. Based upon this setting, we 
measured the performance of FTLs, while varying the number 
of channels and ways. We consider five different architectures 
– 1x1, 2x1, 2x2, 4x2, and 4x4 architectures, where the first 
number and the second number indicate the number of 
channels and the number of ways, respectively.  We also set 
the operating frequency of a channel to 64MHz at which the 
channel will be fully utilized by four interleaved writes 
according to the specification of TABLE I. 

TABLE II summarizes the traces we used in this 
experiment. The first two traces are real traces collected from 
real systems. Trace 1, “distilled” was collected by running 
several programs on a PC [6]. Trace 2, “Downloads” was 
collected using DiskMon [7], while a large file is being 
downloaded from the Internet to a 64GB solid-state disk 
whose file system was FAT32.  

One the other hand, Trace 3 and 4 were synthetic traces. 
The address sequences of both traces were created based on 
random number generation. In case of Trace 4, the data size 
per request was set to 128 sectors to measure the efficiency of 
FTLs for sequential data access patterns. The data size per 
request in Trace 3 was set smaller than or equal to the page 
size, and it varied from 1 sector to 8 sectors to appreciate their 
efficiency for random short data patterns. The fourth column 
in TABLE II shows the average data size per request for each 
trace. These numbers implies the utilization of channels and 
ways. More specifically, the trace with a larger number will be 
more benefited by the increase of channels and ways, since it 
is possible to split the data over the channels and ways.  

B. Oracle FTL 
For comparison purpose, we introduce an ideal FTL called 

oracle FTL. It is only realizable with the offline analysis of 
the target trace, since it assumes that the future of the trace is 
known and that there is no computing overhead. Hence, it 
cannot be implemented in practice. The oracle FTL allocates a 
pair of channel and way to each data such that the allocation 
never induces any garbage collection. For this reason, it can 
maximally utilize the given hardware resources. Note that the 
oracle FTL does not split the data when its size is smaller than 
a page as the proposed method. In other words, it sets the 
performance upper bound of FTLs. 

C. Comparison metrics 
To measure the impact of our method on performance, we 

define several metrics as follows: 
 Throughput is a metric to measure the quantity of data 

processed in a second for a given architecture and trace pair. 
Its unit is MB/s. This metric is used for evaluating the 
performance of FTLs and address translation schemes 
addressed in Section III in absolute value. 
 Channel utilization (CU): is a metric to assess how 
efficiently channels are utilized. It is defined as the 
throughput of an FTL normalized to the sum of channel 
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bandwidths. Note that the sum of channel bandwidths means 
the maximum bandwidth provided by all physical channels. 
Hence, it is proportional to the number of channels.  
 Oracle-aware channel utilization (OCU): is defined as the 
CU of an FTL over the CU of the oracle FTL for comparing 
the performance of an FTL with that of the oracle FTL.  
 Relative oracle-aware channel utilization (ROCU): is a 
metric to evaluate the performance scalability of FTLs. In our 
work, it is desirable that the OCU of an FTL-MM is greater 
than or equal to that of FTL-SS, this means that the increased 
hardware resource (channels and ways) is utilized more 
efficiently than (or as effectively as) in FTL-SS. For this 
purpose, we define the ROCU of an FTL-MM as its OCU over 
the OCU of the corresponding FTL-SS. 

D. Comparison of Address Translation Schemes 
We extended the three FTL-SSs (BAST, FAST, and 

Superblock FTL) for the 4-channel / 4-way architecture by using 
our method. For each FTL-MM, we also created four variants 
and they employ the address translation schemes addressed in 
Section III.D. The performance comparison of these variants is 
shown in Fig. 5. We omit two schemes – HWC and HCW in this 
comparison, since they cannot exploit the concurrency for two 
sequential writes as shown in Fig. 3. The black and white bars 
correspond to WC and CW, respectively. WC always shows 
higher throughput for all FTL-MMs. The channel striping 
achieves higher throughput compared to the way interleaving by 
complete overlapping of writes. The advantage of using WC 
decreases when the data size per request is short as shown in Fig. 
5 (c), since the overlapped writes rarely occur.  
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(c) Trace 3 (d) Trace 4
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Fig. 5. Throughput of an 4-channel / 4-way architecture using three FTLs 
with two different bit positioning for four traces. 

 
E. Channel Utilization of Oracle FTL 

We show the CUs of the oracle FTL for four traces in Fig. 6. 
Even though the oracle FTL is ideal, it cannot fully exploit the 
channel bandwidth, since its CU depends on the data length.  

First, we compare the CUs for all traces at the 1x1 architecture. 
The oracle FTL achieves the highest CU for Trace 4, while 
showing the lowest CU for Trace 3. More precisely, the ranks of 

traces in terms of CU are closely related to their average data size 
which is shown in Table II. The larger the data size is, the higher 
the CU is. The frequency of the write operations with longer data 
is lower than that of the write operations with shorter data to 
store the same amount of data. Hence, shorter data writes waste 
more time for the Cmd and Data phase. 

Next, we examine the CUs at other architectures. If the 
number of ways increases, while fixing the number of channels, 
the CU will increase until the channel is fully saturated. The 
increasing ratio critically depends on the data length. In the 
opposite case, the CU will decrease if the data length is not long 
enough to saturate the channels.  If the data length is long enough, 
the CU will be unchanged. If both numbers change at the same 
time, the CU will be placed between the two boundary values. 
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Fig. 6. The channel utilization of the oracle FTL for four traces. 

 
F. Channel Utilization of Real FTLs 

We compare the CUs of real FTLs with that of the oracle FTL in 
Fig. 7 through Fig. 9. The comparison was performed for all traces 
with various architectural choices, while varying the portion of log 
blocks over the entire blocks (log ratio) from 5% to 15%. The log 
ratio is not critical in a multi-channel / multi-way architecture 
except for BAST. 5% of log blocks are enough for reasonable 
performance as in for the single-channel / single-way architecture 
[5]. The different trend observed in BAST is mainly due to its low 
block-level associativity rather than the architectural effect, since it 
shows a large discrepancy depending on the log ratio at the 1x1 
architecture for Trace 4.  Other than the above case, the CUs of all 
FTLs well follow the CUs of the oracle FTL, even though their gap 
enlarges as the number of channels and/or ways increases. 
Therefore, the FTLs may have the performance scalability issue.  
For the quantitative analysis of the scalability issue, we compute 
ROCU for each FTL and summarize the results in TABLE III 
through TABLE V. We omit the results when the log ratio is 15%, 
since the results are similar, when the log ratio is 10%. 

ROCU represents the OCU of an FTL at a specific 
architecture relative to that of the FTL at the 1x1 architecture. 
It clearly indicates the scalability of an FTL with respect to the 
number of channels and ways. The average ROCUs of FAST 
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and Superblock FTL for the all combinations of traces and log 
ratios are higher than 0.89. That is, the average performance 
degradation of both FTLs  is only 10% in the worst case.  
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Fig. 7. Channel Utilization of BAST 
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Fig. 8. Channel Utilization of FAST 
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Fig. 9. Channel Utilization of Superblock FTL 

Even in BAST, its average ROCU is not far behind those of 
FAST and Superblock FTL except for Trace 4. The log blocks 
are rapidly used up and a large amount of garbage collections 
eventually occur, due to the low block-level associativity of 
BAST and the sequential characteristics of Trace 4. 

Some ROCUs at specific architectures and traces are larger 
than 1, meaning that the FTL-MM manages data and hardware 
resources more efficiently than its corresponding FTL-SS. 
This is due to the concurrent executions of erase and 
read/write operations on different NFMs. More precisely, an 
NFM can serve a write or read operation, while another NFM 
on a different channel (or way) is erased. We call this 
behavior hidden erase. The hidden erase is maximized for 
random short data patterns, which are exactly the case for 
Trace 3. It is also more effective to the FTLs which incur a lot 
of erase operations like BAST. 

TABLE III 
ROCU OF BAST 

ARCHITECTURES TRACE # LOG RATIO(%) 
2X1 2X2 4X2 4X4 AVERAGE 

5 0.97 0.85 0.83 0.71 0.84 1 
10 0.98 0.88 0.84 0.73 0.86 
5 1.00 0.98 0.96 0.88 0.96 2 
10 0.99 0.96 0.93 0.86 0.93 
5 0.97 1.64 3.23 3.82 2.42 3 
10 1.00 1.82 2.18 2.18 1.80 
5 0.85 0.76 0.67 0.54 0.71 4 
10 0.95 0.89 0.80 0.66 0.83 

 
TABLE IV 

ROCU OF FAST 
ARCHITECTURES TRACE # LOG RATIO(%) 

2X1 2X2 4X2 4X4 AVERAGE 
5 0.99 0.92 0.91 0.82 0.91 1 
10 1.27 1.17 1.08 0.85 1.09 
5 0.98 0.98 0.95 0.90 0.95 2 
10 1.02 1.00 0.97 0.90 0.97 
5 1.00 0.95 0.97 0.97 0.97 3 
10 1.00 0.95 0.97 0.97 0.97 
5 1.03 1.00 0.96 0.75 0.93 4 
10 1.05 1.03 0.99 0.78 0.96 

 
TABLE V 

ROCU OF SUPERBLOCK FTL 
ARCHITECTURES TRACE # LOG RATIO(%) 

2X1 2X2 4X2 4X4 AVERAGE 
5 1.00 0.74 0.94 0.89 0.89 1 
10 1.00 0.94 0.93 0.85 0.93 
5 0.99 0.96 0.93 0.86 0.93 2 
10 0.99 0.96 0.93 0.86 0.93 
5 1.00 0.90 0.89 0.89 0.92 3 
10 1.00 0.90 0.89 0.89 0.92 
5 1.04 1.03 0.99 0.78 0.96 4 
10 1.04 1.03 1.00 0.78 0.96 

 

G. Distribution of Erase Operations 
Uniform distribution of erases over NFM cells is crucial to 

prolong the lifetime of an NFM. Similarly, the distribution 
uniformity over the NFMs is important in multi-channel / 
multi-way architecture. 

Fig. 10 shows the erase count distributions of Superblock 
FTL at the 4x4 architecture (log ratio = 10%). Fig. 10 (b) for 
Trace 2 is not our concern, since the total erase counts is too 
small. Fig. 10 (c) and Fig. 10 (d) show the uniform 
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distributions for Trace 3 and Trace 4, respectively. Even 
though their data sizes are quite different, their address 
sequences are random. These results indicate that the erase 
count uniformity is strongly dependent on the locality of the 
address sequences rather than the data length. The distribution 
shown in Fig. 10 (a) further supports this claim, since the 
distribution is less uniform than it is in Fig. 10 (c) and Fig. 10 
(d) due to the locality of the address sequence of Trace 1. 
Even though we have shown the analysis of the erase count 
distribution over the NFMs, our method does not tackle this 
issue directly, which we will investigate as future work. 
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Fig. 10. Erase Counts of 16 NFMs at the 4x4 architecture by Superblock 
FTL. 

 

V. CONCLUSION 
We proposed a general method to design FTL-MMs. We 

proved its generality by applying it to three well-known FTL-
SSs – BAST, FAST, and Superblock FTL.  The advantage of 
our method is that it requires little design time to extend from 
FTL-SSs. Additionally, its implementation scheme incurs little 
computation overhead for indexing blocks. The extensive 
experimental results we obtained show that the FTL-MMs 
generated by our method are comparable to the oracle FTL. It 
has been also shown that the FTLs are scalable with respect 
the number of channels and ways from the performance 
perspective. In addition, we analyzed the erase count 
distribution over the NFMs for the first time. As future work, 
we will extend the proposed method to consider the address 
locality in the address translation scheme for improving the 
distribution uniformity of erase counts. 
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